Spheres centered at the vertices of the snub disphenoid form a cluster that, according to numerical experiments, has the minimum possible Lennard-Jones potential among all eight-sphere clusters. |
Сферы с центрами в вершинах плосконосого двуклиноида образуют блок, который, согласно численным экспериментам, имеет минимальный возможный потенциал Леннард-Джонса среди всех блоков из восьми сфер. |
This is the case for the antiprisms, the icosahedron, the great icosahedron, the small snub icosicosidodecahedron, and the small retrosnub icosicosidodecahedron. |
Это имеет место для антипризм, икосаэдра, большого икосаэдра, малого плосконосого икосоикосододекаэдра и малого обратноплосконосого икосододекаэдра. |
A physical model of the snub disphenoid can be formed by folding a net formed by 12 equilateral triangles (a 12-iamond), shown. |
Физическая модель плосконосого двуклиноида может быть построена путём сгибания развёртки, состоящей из 12 равносторонних треугольников (12-амонда), показанной на рисунке выше. |
For example, one type of geodesic crosses the two opposite edges of the snub disphenoid at their midpoints (where the symmetry axis exits the polytope) at an angle of π/3. |
Например, один из типов геодезических пересекает противоположные рёбра плосконосого двуклиноида в их серединах (где проходят оси симметрии многогранника) под углом π/ 3 {\displaystyle \pi/3}. |
A second type of geodesic passes near the intersection of the snub disphenoid with the plane that perpendicularly bisects the symmetry axis (the equator of the polyhedron), crossing the edges of eight triangles at angles that alternate between π/2 and π/6. |
Второй тип геодезических проходит рядом с пересечением плосконосого двуклиноида плоскостью, которая перпендикулярно делит пополам ось симметрии (экватор многогранника) и пересекает рёбра восьми треугольников под углами π/ 2 {\displaystyle \pi/2} и π/ 6 {\displaystyle \pi/6} попеременно. |
There are 12 uniform snub polyhedra, not including the antiprisms, the icosahedron as a snub tetrahedron, the great icosahedron as a retrosnub tetrahedron and the great disnub dirhombidodecahedron, also known as Skilling's figure. |
Существует 12 однородных плосконосых многогранников, не включая антипризм, икосаэдра как плосконосого тетраэдра, большого икосаэдра как обратноплосконого тетраэдра и большого биплосконосого биромбоикосододекаэдра, известного также как тело Скиллинга. |
Where green is present (only for the snub icosidodecadodecahedron and great snub dodecicosidodecahedron), the faces derived from alternation are red, yellow, and blue, while the snub triangles are green. |
Там, где зелёные грани присутствуют (только для плосконосого икосододекододекаэдра и большого плосконосого додекоикосододекаэдра), грани, полученные альтернацией, окрашены в красный, жёлтый и синий цвета, в то время как треугольники отреза окрашены в зелёный цвет. |