Clearly, if this statement is true, then every bipartite cubic polyhedron contains a Hamiltonian cycle: just choose e and f arbitrarily. |
Ясно, что если утверждение верно, то любой двудольный кубический полиэдральный содержит гамильтонов цикл - просто выберем ё или f. |
David W. Barnette (1969) proposed a weakened combination of Tait's and Tutte's conjectures, stating that every bipartite cubic polyhedron is Hamiltonian, or, equivalently, that every counterexample to Tait's conjecture is non-bipartite. |
Дэвид В. Барнетт в 1969 предложил ослабленную комбинацию гипотез Тэйта и Татта, утверждающую, что любой двудольный кубический полиэдральный граф гамильтонов, или, эквивалентно, что любой контрпример гипотезы Тэйта не является двудлольным. |
Papadimitriou & Ratajczak (2005) conjectured that every polyhedral graph (a 3-vertex-connected planar graph, or equivalently by Steinitz's theorem the graph of a convex polyhedron) has a greedy embedding into the Euclidean plane. |
Пападимитру и Ратайджак высказали предположение, что любой полиэдральный граф (вершинно З-связный граф планарный граф, или, что эквивалентно, согласно теореме Штайница, граф выпуклого многогранника) имеет жадное вложение в евклидову плоскость. |