| Naserasr showed that every triangle-free planar graph also has a homomorphism to the Clebsch graph, a 4-chromatic graph. | Насераср показал, что любой свободный от треугольников планарный граф также имеет гомоморфизм в граф Клебша, 4-хроматический граф. |
| In general, S is an antihomomorphism, so S2 is a homomorphism, which is therefore an automorphism if S was invertible (as may be required). | Вообще говоря, S - антигомоморфизм, так S2 - гомоморфизм, который является поэтому автоморфизмом, если S было обратимо (как может требоваться). |
| An L(2,1)-coloring is a homomorphism into the complement of the path graph that is locally injective, meaning it is required to be injective on the neighbourhood of every vertex. | L(2,1)-раскраска - это локально инъективный гомоморфизм в дополнение пути, что означает, что он должен быть инъективным в окрестности каждой вершины. |
| By combining these two results, it may be shown that every triangle-free planar graph has a homomorphism to a triangle-free 3-colorable graph, the tensor product of K3 with the Clebsch graph. | Путём комбинации этих двух результатов можно показать, что любой свободный от треугольников планарный граф имеет гомоморфизм в свободный от треугольников в раскрашиваемый в З цвета граф, тензорное произведение КЗ с графом Клебша. |
| In the graph homomorphism problem, an instance is a pair of graphs (G, H) and a solution is a homomorphism from G to H. The general decision problem, asking whether there is any solution, is NP-complete. | В задаче о гомоморфизме графа экземпляр задачи состоит из пары графов (G, H), а решением является гомоморфизм из G в H. Общая задача разрешимости, спрашивающая, имеется ли решение этой задачи, NP-полна. |
| An oriented coloring of a directed graph is a homomorphism into any oriented graph. | Ориентированная раскраска ориентированного графа является гомоморфизмом в любой ориентированный граф. |
| The last two staments correspond to the requirement that D is a group homomorphism. | Последние два утверждения соответствуют требованию, чтобы D было гомоморфизмом групп. |
| Now one has to check that d is well-defined (i.e., d(x) only depends on x and not on the choice of y), that it is a homomorphism, and that the resulting long sequence is indeed exact. | Остаётся проверить, что d корректно определён (то есть d(x) зависит только от x, а не от выбора y), что он является гомоморфизмом, и что получившаяся последовательность является точной. |
| The function mapping v0 and v1 in the cover to v in the original graph is a homomorphism and a covering map. | Функция, отображающая v0 и v1 в v исходного графа является гомоморфизмом и накрывыающим отображением. |
| This is equivalent to the above notion, as every dense morphism between two abelian varieties of the same dimension is automatically surjective with finite fibres, and if it preserves identities then it is a homomorphism of groups. | Это эквивалентно вышеприведенному понятию, поскольку любой плотный морфизм между двумя абелевыми многообразиями одной и той же размерности является автоматически сюръективным и имеет конечные слои, а если он сохраняет единицы, то он является гомоморфизмом групп. |
| Constraint satisfaction problems, which generalize graph homomorphism problems, can express various additional types of conditions (such as individual preferences, or bounds on the number of coinciding assignments). | Задачи удовлетворения ограничений, которые обобщают задачи гомоморфизма графа, могут выражать дополнительные типы условий (такие как индивидуальные предпочтения или ограничения на число совпадающих назначений). |
| In general, the question of finding a homomorphism from one relational structure to another is a constraint satisfaction problem (CSP). | В общем случае вопрос поиска гомоморфизма из одной структуры в другую является задачей удовлетворения ограничений (англ. constraint satisfaction problem, CSP). |
| The computational complexity of finding a homomorphism between given graphs is prohibitive in general, but a lot is known about special cases that are solvable in polynomial time. | Вычислительная сложность поиска гомоморфизма между заданными графами в общем случае запредельная, но известно много частных случаев, когда задача выполнима за полиномиальное время. |
| Let a be a root of f; we can then form the ring Z. There is a unique ring homomorphism φ from Z to Z/nZ that maps a to m. | Пусть а корень f; тогда существует кольцо Z. Тогда существует единственное кольцо гомоморфизма (англ.) φ между Z и Z/nZ, которое отображает a в m. |
| For each such pair, we can apply the ring homomorphism φ to the factorization of a+ba, and we can apply the canonical ring homomorphism from Z to Z/nZ to the factorization of a+bm. | Для каждой такой пары чисел (а, Ь) мы можем применить кольцо гомоморфизма φ для факторизации a+ba и каноническое кольцо гомоморфизма от Z до Z/nZ для факторизации a+bm. |
| The homomorphism problem with a fixed graph H on the right side of each instance is also called the H-coloring problem. | Задача о гомоморфизме с фиксированным графом Н с правой стороны каждого экземпляра называется задачей Н-раскраски. |
| In the language of parameterized complexity, this formally states that the homomorphism problem in G {\displaystyle {\mathcal {G}}} parameterized by the size (number of edges) of G exhibits a dichotomy. | На языке параметризованной сложности это утверждение формально гласит, что задача о гомоморфизме с графом G {\displaystyle {\mathcal {G}}}, параметризованная по размеру (числу рёбер) графа G, показывает дихотомию. |
| For a graph G of treewidth at most k and a graph H, the homomorphism problem can be solved in time |V(H)|O(k) with a standard dynamic programming approach. | Для графа G с древесной шириной, не превосходящей k, и графа H задача о гомоморфизме может быть решена за время|V(H)|O(k) стандартными методами динамического программирования. |
| In the graph homomorphism problem, an instance is a pair of graphs (G, H) and a solution is a homomorphism from G to H. The general decision problem, asking whether there is any solution, is NP-complete. | В задаче о гомоморфизме графа экземпляр задачи состоит из пары графов (G, H), а решением является гомоморфизм из G в H. Общая задача разрешимости, спрашивающая, имеется ли решение этой задачи, NP-полна. |