| Graph C {\displaystyle C} is a core if every homomorphism f: C -> C {\displaystyle f:C\to C} is an isomorphism, that is it is a bijection of vertices of C {\displaystyle C}. | Граф С {\displaystyle C} является ядром, если любой гомоморфизм f: C -> C {\displaystyle f:C\to C} является изоморфизмом, то есть, это биекция вершин C {\displaystyle C}. |
| In areas of mathematics where one considers groups endowed with additional structure, a homomorphism sometimes means a map which respects not only the group structure (as above) but also the extra structure. | В областях математики, где группы снабжаются дополнительными структурами, гомоморфизм иногда понимается как отображение, сохраняющее не только структуру группы (как выше), но и дополнительную структуру. |
| In fact the Witt polynomials always give a homomorphism from the ring of Witt vectors to R N {\displaystyle R^{\mathbb {N}}}, and if p is invertible this homomorphism is an isomorphism. | Фактически, многочлены Витта всегда дают гомоморфизм из кольца векторов Витта в R N {\displaystyle R^{N}}, и, если p - обратимо, этот гомоморфизм является изоморфизмом. |
| In the graph homomorphism problem, an instance is a pair of graphs (G, H) and a solution is a homomorphism from G to H. The general decision problem, asking whether there is any solution, is NP-complete. | В задаче о гомоморфизме графа экземпляр задачи состоит из пары графов (G, H), а решением является гомоморфизм из G в H. Общая задача разрешимости, спрашивающая, имеется ли решение этой задачи, NP-полна. |
| A semigroup homomorphism is a function that preserves semigroup structure. | Гомоморфизм полугрупп - это отображение, сохраняющее структуру полугруппы. |
| A circular coloring is then, according to the second definition above, a homomorphism into a circular complete graph. | Цикловая раскраска тогда, согласно второму определению выше, является гомоморфизмом в цикловой полный граф. |
| An oriented coloring of a directed graph is a homomorphism into any oriented graph. | Ориентированная раскраска ориентированного графа является гомоморфизмом в любой ориентированный граф. |
| A 3-coloring of a graph G may be described by a graph homomorphism from G to a triangle K3. | Раскраска в З цвета графа G может быть описана гомоморфизмом графов из G в треугольник K3. |
| This is equivalent to the above notion, as every dense morphism between two abelian varieties of the same dimension is automatically surjective with finite fibres, and if it preserves identities then it is a homomorphism of groups. | Это эквивалентно вышеприведенному понятию, поскольку любой плотный морфизм между двумя абелевыми многообразиями одной и той же размерности является автоматически сюръективным и имеет конечные слои, а если он сохраняет единицы, то он является гомоморфизмом групп. |
| The coloring of the graph may then be recovered by composing this homomorphism with the homomorphism from this tensor product to its K3 factor. | Раскраска графа может быть тогда получена путём суперпозиции этого гомоморфизма с гомоморфизмом из их тензорного произведения в их КЗ множитель. |
| Constraint satisfaction problems, which generalize graph homomorphism problems, can express various additional types of conditions (such as individual preferences, or bounds on the number of coinciding assignments). | Задачи удовлетворения ограничений, которые обобщают задачи гомоморфизма графа, могут выражать дополнительные типы условий (такие как индивидуальные предпочтения или ограничения на число совпадающих назначений). |
| In general, the question of finding a homomorphism from one relational structure to another is a constraint satisfaction problem (CSP). | В общем случае вопрос поиска гомоморфизма из одной структуры в другую является задачей удовлетворения ограничений (англ. constraint satisfaction problem, CSP). |
| This is because every undirected graph can be thought of as a directed graph where every arc (u, v) appears together with its inverse arc (v, u), and this does not change the definition of homomorphism. | Это потому, что любой неориентированный граф можно рассматривать как ориентированный, в котором любая дуга (u, v) появляется вместе с обратной дугой (v, u), а это не меняет определение гомоморфизма. |
| Let a be a root of f; we can then form the ring Z. There is a unique ring homomorphism φ from Z to Z/nZ that maps a to m. | Пусть а корень f; тогда существует кольцо Z. Тогда существует единственное кольцо гомоморфизма (англ.) φ между Z и Z/nZ, которое отображает a в m. |
| The important statement of the lemma is that a connecting homomorphism d exists which completes the exact sequence. | Важная часть утверждения леммы состоит в существоании связывающего гомоморфизма d, включающегося в точную последовательность. |
| The homomorphism problem with a fixed graph H on the right side of each instance is also called the H-coloring problem. | Задача о гомоморфизме с фиксированным графом Н с правой стороны каждого экземпляра называется задачей Н-раскраски. |
| In the language of parameterized complexity, this formally states that the homomorphism problem in G {\displaystyle {\mathcal {G}}} parameterized by the size (number of edges) of G exhibits a dichotomy. | На языке параметризованной сложности это утверждение формально гласит, что задача о гомоморфизме с графом G {\displaystyle {\mathcal {G}}}, параметризованная по размеру (числу рёбер) графа G, показывает дихотомию. |
| For a graph G of treewidth at most k and a graph H, the homomorphism problem can be solved in time |V(H)|O(k) with a standard dynamic programming approach. | Для графа G с древесной шириной, не превосходящей k, и графа H задача о гомоморфизме может быть решена за время|V(H)|O(k) стандартными методами динамического программирования. |
| In the graph homomorphism problem, an instance is a pair of graphs (G, H) and a solution is a homomorphism from G to H. The general decision problem, asking whether there is any solution, is NP-complete. | В задаче о гомоморфизме графа экземпляр задачи состоит из пары графов (G, H), а решением является гомоморфизм из G в H. Общая задача разрешимости, спрашивающая, имеется ли решение этой задачи, NP-полна. |