| In other words, the group H in some sense has a similar algebraic structure as G and the homomorphism h preserves that. | Другими словами, группа Н в некотором смысле подобна алгебраической структуре G и гомоморфизм h сохраняет её. |
| This can be shown using the fact that a homomorphism maps a connected graph into one connected component of the target graph. | Это можно показать используя факт, что гомоморфизм отображает связный граф в связную компоненту целевого графа. |
| More precisely, it is graph homomorphism φ from G to itself such that φ(v) = v for each vertex v in the subgraph φ(G). | Точнее, это гомоморфизм φ из G в себя, в котором φ(v) = v для каждой вершины v в подграфе φ(G). |
| By combining these two results, it may be shown that every triangle-free planar graph has a homomorphism to a triangle-free 3-colorable graph, the tensor product of K3 with the Clebsch graph. | Путём комбинации этих двух результатов можно показать, что любой свободный от треугольников планарный граф имеет гомоморфизм в свободный от треугольников в раскрашиваемый в З цвета граф, тензорное произведение КЗ с графом Клебша. |
| A homomorphism between orientations of graphs G and H yields a homomorphism between the undirected graphs G and H, simply by disregarding the orientations. | Гомоморфизм между ориентациями графов G и H даёт гомоморфизм между неориентированными графами G и H, если просто игнорировать ориентации. |
| A 3-coloring of a graph G may be described by a graph homomorphism from G to a triangle K3. | Раскраска в З цвета графа G может быть описана гомоморфизмом графов из G в треугольник K3. |
| Now one has to check that d is well-defined (i.e., d(x) only depends on x and not on the choice of y), that it is a homomorphism, and that the resulting long sequence is indeed exact. | Остаётся проверить, что d корректно определён (то есть d(x) зависит только от x, а не от выбора y), что он является гомоморфизмом, и что получившаяся последовательность является точной. |
| The function mapping v0 and v1 in the cover to v in the original graph is a homomorphism and a covering map. | Функция, отображающая v0 и v1 в v исходного графа является гомоморфизмом и накрывыающим отображением. |
| This is equivalent to the above notion, as every dense morphism between two abelian varieties of the same dimension is automatically surjective with finite fibres, and if it preserves identities then it is a homomorphism of groups. | Это эквивалентно вышеприведенному понятию, поскольку любой плотный морфизм между двумя абелевыми многообразиями одной и той же размерности является автоматически сюръективным и имеет конечные слои, а если он сохраняет единицы, то он является гомоморфизмом групп. |
| A function between two cyclically ordered sets, f: X -> Y, is called a monotonic function or a homomorphism if it pulls back the ordering on Y: whenever, one has. | Функция между двумя циклически упорядоченными множествами, f: X -> Y, называется монотонной функцией или гомоморфизмом, если она сохраняет порядок на Y - если, имеем. |
| The purpose of defining a group homomorphism is to create functions that preserve the algebraic structure. | Цель определения гомоморфизма группы - создать функции, сохраняющие алгебраическую структуру. |
| This is because every undirected graph can be thought of as a directed graph where every arc (u, v) appears together with its inverse arc (v, u), and this does not change the definition of homomorphism. | Это потому, что любой неориентированный граф можно рассматривать как ориентированный, в котором любая дуга (u, v) появляется вместе с обратной дугой (v, u), а это не меняет определение гомоморфизма. |
| For each such pair, we can apply the ring homomorphism φ to the factorization of a+ba, and we can apply the canonical ring homomorphism from Z to Z/nZ to the factorization of a+bm. | Для каждой такой пары чисел (а, Ь) мы можем применить кольцо гомоморфизма φ для факторизации a+ba и каноническое кольцо гомоморфизма от Z до Z/nZ для факторизации a+bm. |
| An equivalent definition of group homomorphism is: The function h: G -> H is a group homomorphism if whenever a b = c we have h(a) ⋅ h(b) = h(c). | Эквивалентное определение гомоморфизма группы: Функция h: G -> H является гомоморфизмом группы, если из a b = c следует h(a) ⋅ h(b) = h(c). |
| The important statement of the lemma is that a connecting homomorphism d exists which completes the exact sequence. | Важная часть утверждения леммы состоит в существоании связывающего гомоморфизма d, включающегося в точную последовательность. |
| The homomorphism problem with a fixed graph H on the right side of each instance is also called the H-coloring problem. | Задача о гомоморфизме с фиксированным графом Н с правой стороны каждого экземпляра называется задачей Н-раскраски. |
| In the language of parameterized complexity, this formally states that the homomorphism problem in G {\displaystyle {\mathcal {G}}} parameterized by the size (number of edges) of G exhibits a dichotomy. | На языке параметризованной сложности это утверждение формально гласит, что задача о гомоморфизме с графом G {\displaystyle {\mathcal {G}}}, параметризованная по размеру (числу рёбер) графа G, показывает дихотомию. |
| For a graph G of treewidth at most k and a graph H, the homomorphism problem can be solved in time |V(H)|O(k) with a standard dynamic programming approach. | Для графа G с древесной шириной, не превосходящей k, и графа H задача о гомоморфизме может быть решена за время|V(H)|O(k) стандартными методами динамического программирования. |
| In the graph homomorphism problem, an instance is a pair of graphs (G, H) and a solution is a homomorphism from G to H. The general decision problem, asking whether there is any solution, is NP-complete. | В задаче о гомоморфизме графа экземпляр задачи состоит из пары графов (G, H), а решением является гомоморфизм из G в H. Общая задача разрешимости, спрашивающая, имеется ли решение этой задачи, NP-полна. |