Английский - русский
Перевод слова Homomorphism

Перевод homomorphism с английского на русский

с примерами в контексте

Примеры:
Гомоморфизм (примеров 21)
In algebra a monomorphism is an injective homomorphism. В алгебре мономорфизм - это инъективный гомоморфизм.
These are the graphs K such that a product G× H has a homomorphism to K only when one of G or H also does. Это графы К, такие что произведение G× H {\displaystyle G\times H} имеет гомоморфизм в K только тогда, когда один из графов G или H имеет такой гомоморфизм.
Graph C {\displaystyle C} is a core if every homomorphism f: C -> C {\displaystyle f:C\to C} is an isomorphism, that is it is a bijection of vertices of C {\displaystyle C}. Граф С {\displaystyle C} является ядром, если любой гомоморфизм f: C -> C {\displaystyle f:C\to C} является изоморфизмом, то есть, это биекция вершин C {\displaystyle C}.
In fact the Witt polynomials always give a homomorphism from the ring of Witt vectors to R N {\displaystyle R^{\mathbb {N}}}, and if p is invertible this homomorphism is an isomorphism. Фактически, многочлены Витта всегда дают гомоморфизм из кольца векторов Витта в R N {\displaystyle R^{N}}, и, если p - обратимо, этот гомоморфизм является изоморфизмом.
For graphs G and H, the question of whether G has a homomorphism to H corresponds to a CSP instance with only one kind of constraint, as follows. Для графов G и H вопрос, имеет ли граф G гомоморфизм в граф H, соответствует частному случаю задачи удовлетворения ограничений с только одним видом ограничений.
Больше примеров...
Гомоморфизмом (примеров 16)
A circular coloring is then, according to the second definition above, a homomorphism into a circular complete graph. Цикловая раскраска тогда, согласно второму определению выше, является гомоморфизмом в цикловой полный граф.
A 3-coloring of a graph G may be described by a graph homomorphism from G to a triangle K3. Раскраска в З цвета графа G может быть описана гомоморфизмом графов из G в треугольник K3.
The map h: Z -> Z/3Z with h(u) = u mod 3 is a group homomorphism. Отображение h: Z -> Z/3Z с h(u) = u mod 3 является гомоморфизмом.
This is equivalent to the above notion, as every dense morphism between two abelian varieties of the same dimension is automatically surjective with finite fibres, and if it preserves identities then it is a homomorphism of groups. Это эквивалентно вышеприведенному понятию, поскольку любой плотный морфизм между двумя абелевыми многообразиями одной и той же размерности является автоматически сюръективным и имеет конечные слои, а если он сохраняет единицы, то он является гомоморфизмом групп.
An equivalent definition of group homomorphism is: The function h: G -> H is a group homomorphism if whenever a b = c we have h(a) ⋅ h(b) = h(c). Эквивалентное определение гомоморфизма группы: Функция h: G -> H является гомоморфизмом группы, если из a b = c следует h(a) ⋅ h(b) = h(c).
Больше примеров...
Гомоморфизма (примеров 10)
This is because every undirected graph can be thought of as a directed graph where every arc (u, v) appears together with its inverse arc (v, u), and this does not change the definition of homomorphism. Это потому, что любой неориентированный граф можно рассматривать как ориентированный, в котором любая дуга (u, v) появляется вместе с обратной дугой (v, u), а это не меняет определение гомоморфизма.
Let a be a root of f; we can then form the ring Z. There is a unique ring homomorphism φ from Z to Z/nZ that maps a to m. Пусть а корень f; тогда существует кольцо Z. Тогда существует единственное кольцо гомоморфизма (англ.) φ между Z и Z/nZ, которое отображает a в m.
For each such pair, we can apply the ring homomorphism φ to the factorization of a+ba, and we can apply the canonical ring homomorphism from Z to Z/nZ to the factorization of a+bm. Для каждой такой пары чисел (а, Ь) мы можем применить кольцо гомоморфизма φ для факторизации a+ba и каноническое кольцо гомоморфизма от Z до Z/nZ для факторизации a+bm.
The coloring of the graph may then be recovered by composing this homomorphism with the homomorphism from this tensor product to its K3 factor. Раскраска графа может быть тогда получена путём суперпозиции этого гомоморфизма с гомоморфизмом из их тензорного произведения в их КЗ множитель.
The important statement of the lemma is that a connecting homomorphism d exists which completes the exact sequence. Важная часть утверждения леммы состоит в существоании связывающего гомоморфизма d, включающегося в точную последовательность.
Больше примеров...
Гомоморфизме (примеров 4)
The homomorphism problem with a fixed graph H on the right side of each instance is also called the H-coloring problem. Задача о гомоморфизме с фиксированным графом Н с правой стороны каждого экземпляра называется задачей Н-раскраски.
In the language of parameterized complexity, this formally states that the homomorphism problem in G {\displaystyle {\mathcal {G}}} parameterized by the size (number of edges) of G exhibits a dichotomy. На языке параметризованной сложности это утверждение формально гласит, что задача о гомоморфизме с графом G {\displaystyle {\mathcal {G}}}, параметризованная по размеру (числу рёбер) графа G, показывает дихотомию.
For a graph G of treewidth at most k and a graph H, the homomorphism problem can be solved in time |V(H)|O(k) with a standard dynamic programming approach. Для графа G с древесной шириной, не превосходящей k, и графа H задача о гомоморфизме может быть решена за время|V(H)|O(k) стандартными методами динамического программирования.
In the graph homomorphism problem, an instance is a pair of graphs (G, H) and a solution is a homomorphism from G to H. The general decision problem, asking whether there is any solution, is NP-complete. В задаче о гомоморфизме графа экземпляр задачи состоит из пары графов (G, H), а решением является гомоморфизм из G в H. Общая задача разрешимости, спрашивающая, имеется ли решение этой задачи, NP-полна.
Больше примеров...