| A regular icosahedron has 60 rotational (or orientation-preserving) symmetries, and a symmetry order of 120 including transformations that combine a reflection and a rotation. | Правильный икосаэдр имеет 60 вращательных (или сохраняющих ориентацию) симметрий и имеет порядок симметрии 120, включая преобразования, которые комбинируют отражение и вращение. |
| 1809: Louis Poinsot rediscovered Kepler's polyhedra and two more, the great icosahedron and great dodecahedron as regular star polyhedra, now called the Kepler-Poinsot polyhedra. | Гораздо позже - в 1809 году - Луи Пуансо заново открыл многогранники Кеплера, а также открыл ещё два звёздчатых многогранника: большой додекаэдр и большой икосаэдр, которые теперь называют телами Кеплера - Пуансо. |
| Only the icosahedron, great icosahedron, small snub icosicosidodecahedron, small retrosnub icosicosidodecahedron, great dirhombicosidodecahedron, and great disnub dirhombidodecahedron also have reflective symmetries. | Только икосаэдр, большой икосаэдр, малый плосконосый икосоикосододекаэдр, малый обратноплосконосый икосододекаэдр, большой биромбоикосододекаэдр и большой биплосконосый биромбоикосододекаэдр имеют также зеркальные симметрии. |
| For example, the tridiminished icosahedron starts with a regular icosahedron with 3 vertices removed. | Например, триуменьшенный икосаэдр получается из правильного икосаэдра путём удаления трёх вершин. |
| And you can see how the icosahedron withdraws into the dodecahedron and then they just merge into each other. | И вы можете убедиться, как икосаэдр втягивается в додекаэдр, а затем они просто сливаются друг с другом. |
| The maximum in 3 dimensions is 6: we can take lines through opposite vertices of an icosahedron. | Максимальное число в трёхмерном пространстве равно 6 - можно провести прямые через противоположные вершины икосаэдра. |
| In 1858, Bertrand derived the regular star polyhedra (Kepler-Poinsot polyhedra) by faceting the regular convex icosahedron and dodecahedron. | В 1858 году Бертран получил правильные звёздчатые многогранники (тела Кеплера - Пуансо) путём огранки правильных выпуклых икосаэдра и додекаэдра. |
| One can also divide the edges of an octahedron in the ratio of the golden mean to define the vertices of an icosahedron. | Можно разделить рёбра октаэдра в отношении золотого сечения для определения вершин икосаэдра. |
| Their names, given by Kepler, come from recognizing their faces contain all the faces of the dual-pair cube and octahedron, in the first, and the dual-pair icosahedron and dodecahedron in the second case. | Имена этих многогранников, данные Кеплером, происходят от понимания, что их грани содержат все грани двойственной пары куба и октаэдра в первом случае, и двойственной пары икосаэдра и додекаэдра во втором. |
| There are 12 uniform snub polyhedra, not including the antiprisms, the icosahedron as a snub tetrahedron, the great icosahedron as a retrosnub tetrahedron and the great disnub dirhombidodecahedron, also known as Skilling's figure. | Существует 12 однородных плосконосых многогранников, не включая антипризм, икосаэдра как плосконосого тетраэдра, большого икосаэдра как обратноплосконого тетраэдра и большого биплосконосого биромбоикосододекаэдра, известного также как тело Скиллинга. |
| Note the duality between the cube and the octahedron, and between the dodecahedron and the icosahedron. | Заметим двойственность между кубом и октаэдром и между додекаэдром и икосаэдром. |
| Its dual, the great icosahedron, is related in a similar fashion to the icosahedron. | Его двойственный многогранник, большой икосаэдр, связан похожим образом с икосаэдром. |
| A regular dodecahedron has the same set of symmetries, since it is the dual of the icosahedron. | Правильный додекаэдр имеет тот же набор симметрий, поскольку он двойственен икосаэдру. |
| The triangular tilings are depicted below: Spherical tilings corresponding to the octahedron and the icosahedron and dihedral spherical tilings with even n are centrally symmetric. | Треугольные замощения приведены ниже: Сферические паркеты, соответствующие октаэдру и икосаэдру, а также диэдральным сферичесим мозаикам с чётным n, центрально симметричны. |
| Earth was associated with the cube, air with the octahedron, water with the icosahedron, and fire with the tetrahedron. | Земля сопоставлялась кубу, воздух - октаэдру, вода - икосаэдру, а огонь - тетраэдру. |