| A necessary and sufficient condition for the existence of an S(3,4,n) is that n = {\displaystyle \equiv} 2 or 4 (mod 6). | Необходимое и достаточное условие существования S(3,4,n) - n = {\displaystyle \equiv} 2 или 4 (mod 6). |
| A necessary condition for the existence of such a system is that n = {\displaystyle \equiv} 3 or 5 (mod 6) which comes from considerations that apply to all the classical Steiner systems. | Необходимое условие существования такой системы - n = {\displaystyle \equiv} 3 или 5 (mod 6), что получается из соглашений, которые применимы ко всем классическим системам Штейнера. |
| An additional necessary condition is that n ≢ {\displaystyle ot \equiv} 4 (mod 5), which comes from the fact that the number of blocks must be an integer. | Дополнительное условие для общих систем, что n ≢ {\displaystyle ot \equiv} 4 (mod 5), получается из факта, что число блоков должно быть целым. |
| If x n + 1 ≢ - c {\displaystyle x^{n+1} ot \equiv -c} then stop as n is composite. | Если выполнено х n + 1 ≢ - c {\displaystyle x^{n+1} ot \equiv -c}, то останавливаем, поскольку n является составным. |
| However, the converse (if 2 n = 2 mod n {\displaystyle 2^{n}\equiv 2{\bmod {n}}} then n is prime) is false, and therefore the hypothesis as a whole is false. | Однако обратное утверждение, что из 2 n = 2 (mod n) {\displaystyle \,2^{n}\equiv 2{\pmod {n}}} следует простота n, неверно, а потому и в целом гипотеза не верна. |