| A regular icosahedron has 60 rotational (or orientation-preserving) symmetries, and a symmetry order of 120 including transformations that combine a reflection and a rotation. | Правильный икосаэдр имеет 60 вращательных (или сохраняющих ориентацию) симметрий и имеет порядок симметрии 120, включая преобразования, которые комбинируют отражение и вращение. |
| Only the icosahedron and the great icosahedron are also regular polyhedra. | Только икосаэдр и большой икосаэдр являются также правильными многогранниками. |
| (Example: an icosahedron greatens into a great icosahedron) aggrandizement - replaces the cells by large ones in same 3-spaces. | (Пример - икосаэдр увеличивается в большой икосаэдр) aggrandizement (возвеличивание) заменяет ячейки большими в тех же 3-мерных пространствах. |
| There are 58 stellations of the icosahedron, including the great icosahedron (one of the Kepler-Poinsot polyhedra), and the second and final stellations of the icosahedron. | Существует 58 звёздчатых форм икосаэдра, сюда входят Большой икосаэдр (одно из тел Кеплера - Пуансо), вторая и последняя звёздчатые формы икосаэдра. |
| The regular icosahedron can be faceted into three regular Kepler-Poinsot polyhedra: small stellated dodecahedron, great dodecahedron, and great icosahedron. | Правильный икосаэдр может быть огранён до трёх правильных многогранников Кеплера - Пуансо - малого звёздчатого додекаэдра, большого додекаэдра и большого икосаэдра. |
| The two pentagonal faces of either shape can be augmented with pyramids to form the icosahedron. | Две пятиугольные грани обеих фигур можно нарастить пирамидами с образованием икосаэдра. |
| In 1858, Bertrand derived the regular star polyhedra (Kepler-Poinsot polyhedra) by faceting the regular convex icosahedron and dodecahedron. | В 1858 году Бертран получил правильные звёздчатые многогранники (тела Кеплера - Пуансо) путём огранки правильных выпуклых икосаэдра и додекаэдра. |
| However, the icosahedron is not bipartite, so it is not the bipartite double cover of K6. | Однако икосаэдр не является двудольным, так что граф икосаэдра не является двудольным двойным покрытием графа K6. |
| For instance, the octahedron is the unique connected locally C4 graph, the icosahedron is the unique connected locally C5 graph, and the Paley graph of order 13 is locally C6. | Например, граф октаэдра является единственным локально C4 графом, граф икосаэдра является единственным локально C5 графом, а граф Пэли порядка 13 локально равен C6. |
| The regular icosahedron can be faceted into three regular Kepler-Poinsot polyhedra: small stellated dodecahedron, great dodecahedron, and great icosahedron. | Правильный икосаэдр может быть огранён до трёх правильных многогранников Кеплера - Пуансо - малого звёздчатого додекаэдра, большого додекаэдра и большого икосаэдра. |
| Note the duality between the cube and the octahedron, and between the dodecahedron and the icosahedron. | Заметим двойственность между кубом и октаэдром и между додекаэдром и икосаэдром. |
| Its dual, the great icosahedron, is related in a similar fashion to the icosahedron. | Его двойственный многогранник, большой икосаэдр, связан похожим образом с икосаэдром. |
| A regular dodecahedron has the same set of symmetries, since it is the dual of the icosahedron. | Правильный додекаэдр имеет тот же набор симметрий, поскольку он двойственен икосаэдру. |
| The triangular tilings are depicted below: Spherical tilings corresponding to the octahedron and the icosahedron and dihedral spherical tilings with even n are centrally symmetric. | Треугольные замощения приведены ниже: Сферические паркеты, соответствующие октаэдру и икосаэдру, а также диэдральным сферичесим мозаикам с чётным n, центрально симметричны. |
| Earth was associated with the cube, air with the octahedron, water with the icosahedron, and fire with the tetrahedron. | Земля сопоставлялась кубу, воздух - октаэдру, вода - икосаэдру, а огонь - тетраэдру. |