| The boundary of a convex polyhedron in R3 with triangular faces, such as an octahedron or icosahedron, is a simplicial 2-sphere. | Граница выпуклого многогранника в R3 с правильными гранями, такого как октаэдр или икосаэдр, является 2-сферой. |
| These can be expanded to Platonic solids: five, four and three triangles on a vertex define an icosahedron, octahedron, and tetrahedron respectively. | Отсюда можно получить правильные многогранники: пять, четыре и три треугольника в вершине дают икосаэдр, октаэдр и тетраэдр соответственно. |
| However, the icosahedron is not bipartite, so it is not the bipartite double cover of K6. | Однако икосаэдр не является двудольным, так что граф икосаэдра не является двудольным двойным покрытием графа K6. |
| There are 58 stellations of the icosahedron, including the great icosahedron (one of the Kepler-Poinsot polyhedra), and the second and final stellations of the icosahedron. | Существует 58 звёздчатых форм икосаэдра, сюда входят Большой икосаэдр (одно из тел Кеплера - Пуансо), вторая и последняя звёздчатые формы икосаэдра. |
| The regular icosahedron can be faceted into three regular Kepler-Poinsot polyhedra: small stellated dodecahedron, great dodecahedron, and great icosahedron. | Правильный икосаэдр может быть огранён до трёх правильных многогранников Кеплера - Пуансо - малого звёздчатого додекаэдра, большого додекаэдра и большого икосаэдра. |
| The motivation for Hamilton was the problem of symmetries of an icosahedron, for which he invented icosian calculus-an algebraic tool to compute the symmetries. | Причиной интереса Гамильтона к игре было изучение симметрий икосаэдра, для которого он изобрёл икосианы - алгебраическое средство вычисления симметрий. |
| This is the case for the antiprisms, the icosahedron, the great icosahedron, the small snub icosicosidodecahedron, and the small retrosnub icosicosidodecahedron. | Это имеет место для антипризм, икосаэдра, большого икосаэдра, малого плосконосого икосоикосододекаэдра и малого обратноплосконосого икосододекаэдра. |
| There are 12 uniform snub polyhedra, not including the antiprisms, the icosahedron as a snub tetrahedron, the great icosahedron as a retrosnub tetrahedron and the great disnub dirhombidodecahedron, also known as Skilling's figure. | Существует 12 однородных плосконосых многогранников, не включая антипризм, икосаэдра как плосконосого тетраэдра, большого икосаэдра как обратноплосконого тетраэдра и большого биплосконосого биромбоикосододекаэдра, известного также как тело Скиллинга. |
| However, the icosahedron is not bipartite, so it is not the bipartite double cover of K6. | Однако икосаэдр не является двудольным, так что граф икосаэдра не является двудольным двойным покрытием графа K6. |
| 1974: In Wenninger's 1974 book Polyhedron Models, the final stellation of the icosahedron is included as the 17th model of stellated icosahedra with index number W42. | В труде Магнуса Веннинджера, изданной в 1974 году Модели многогранников, ехиднаэдр включён как 17-я модель икосаэдра с индексом W42. |
| Note the duality between the cube and the octahedron, and between the dodecahedron and the icosahedron. | Заметим двойственность между кубом и октаэдром и между додекаэдром и икосаэдром. |
| Its dual, the great icosahedron, is related in a similar fashion to the icosahedron. | Его двойственный многогранник, большой икосаэдр, связан похожим образом с икосаэдром. |
| A regular dodecahedron has the same set of symmetries, since it is the dual of the icosahedron. | Правильный додекаэдр имеет тот же набор симметрий, поскольку он двойственен икосаэдру. |
| The triangular tilings are depicted below: Spherical tilings corresponding to the octahedron and the icosahedron and dihedral spherical tilings with even n are centrally symmetric. | Треугольные замощения приведены ниже: Сферические паркеты, соответствующие октаэдру и икосаэдру, а также диэдральным сферичесим мозаикам с чётным n, центрально симметричны. |
| Earth was associated with the cube, air with the octahedron, water with the icosahedron, and fire with the tetrahedron. | Земля сопоставлялась кубу, воздух - октаэдру, вода - икосаэдру, а огонь - тетраэдру. |