| The other two Kepler-Poinsot polyhedra (the great stellated dodecahedron and great icosahedron) do not have regular hyperbolic tiling analogues. | Другие два тела Кеплера - Пуансо (большой звёздчатый додекаэдр и большой икосаэдр) не имеют аналогов в правильных гиперболических мозаиках. |
| 1809: Louis Poinsot rediscovered Kepler's polyhedra and two more, the great icosahedron and great dodecahedron as regular star polyhedra, now called the Kepler-Poinsot polyhedra. | Гораздо позже - в 1809 году - Луи Пуансо заново открыл многогранники Кеплера, а также открыл ещё два звёздчатых многогранника: большой додекаэдр и большой икосаэдр, которые теперь называют телами Кеплера - Пуансо. |
| Only the icosahedron, great icosahedron, small snub icosicosidodecahedron, small retrosnub icosicosidodecahedron, great dirhombicosidodecahedron, and great disnub dirhombidodecahedron also have reflective symmetries. | Только икосаэдр, большой икосаэдр, малый плосконосый икосоикосододекаэдр, малый обратноплосконосый икосододекаэдр, большой биромбоикосододекаэдр и большой биплосконосый биромбоикосододекаэдр имеют также зеркальные симметрии. |
| For example, the tridiminished icosahedron starts with a regular icosahedron with 3 vertices removed. | Например, триуменьшенный икосаэдр получается из правильного икосаэдра путём удаления трёх вершин. |
| And you can see how the icosahedron withdraws into the dodecahedron and then they just merge into each other. | И вы можете убедиться, как икосаэдр втягивается в додекаэдр, а затем они просто сливаются друг с другом. |
| In 1858, Bertrand derived the regular star polyhedra (Kepler-Poinsot polyhedra) by faceting the regular convex icosahedron and dodecahedron. | В 1858 году Бертран получил правильные звёздчатые многогранники (тела Кеплера - Пуансо) путём огранки правильных выпуклых икосаэдра и додекаэдра. |
| There are 12 uniform snub polyhedra, not including the antiprisms, the icosahedron as a snub tetrahedron, the great icosahedron as a retrosnub tetrahedron and the great disnub dirhombidodecahedron, also known as Skilling's figure. | Существует 12 однородных плосконосых многогранников, не включая антипризм, икосаэдра как плосконосого тетраэдра, большого икосаэдра как обратноплосконого тетраэдра и большого биплосконосого биромбоикосододекаэдра, известного также как тело Скиллинга. |
| The convex hull of two opposite edges of a regular icosahedron forms a golden rectangle. | Выпуклая оболочка двух противоположных рёбер правильного икосаэдра образует золотой прямоугольник. |
| For instance, the 11-vertex graph formed by removing a vertex from the regular icosahedron (the graph of the gyroelongated pentagonal pyramid) is both 2-connected and claw-free, so it is factor-critical. | Например, граф с 11 вершинами, образованный вершинами правильного икосаэдра (граф скрученно удлинённой пятиугольной пирамиды), является как 2-связным, так и свободным от клешней, так что он является фактор-критическим. |
| 1974: In Wenninger's 1974 book Polyhedron Models, the final stellation of the icosahedron is included as the 17th model of stellated icosahedra with index number W42. | В труде Магнуса Веннинджера, изданной в 1974 году Модели многогранников, ехиднаэдр включён как 17-я модель икосаэдра с индексом W42. |
| Note the duality between the cube and the octahedron, and between the dodecahedron and the icosahedron. | Заметим двойственность между кубом и октаэдром и между додекаэдром и икосаэдром. |
| Its dual, the great icosahedron, is related in a similar fashion to the icosahedron. | Его двойственный многогранник, большой икосаэдр, связан похожим образом с икосаэдром. |
| A regular dodecahedron has the same set of symmetries, since it is the dual of the icosahedron. | Правильный додекаэдр имеет тот же набор симметрий, поскольку он двойственен икосаэдру. |
| The triangular tilings are depicted below: Spherical tilings corresponding to the octahedron and the icosahedron and dihedral spherical tilings with even n are centrally symmetric. | Треугольные замощения приведены ниже: Сферические паркеты, соответствующие октаэдру и икосаэдру, а также диэдральным сферичесим мозаикам с чётным n, центрально симметричны. |
| Earth was associated with the cube, air with the octahedron, water with the icosahedron, and fire with the tetrahedron. | Земля сопоставлялась кубу, воздух - октаэдру, вода - икосаэдру, а огонь - тетраэдру. |