| You see the icosahedron again. | Вы снова видите икосаэдр. |
| 1809: Louis Poinsot rediscovered Kepler's polyhedra and two more, the great icosahedron and great dodecahedron as regular star polyhedra, now called the Kepler-Poinsot polyhedra. | Гораздо позже - в 1809 году - Луи Пуансо заново открыл многогранники Кеплера, а также открыл ещё два звёздчатых многогранника: большой додекаэдр и большой икосаэдр, которые теперь называют телами Кеплера - Пуансо. |
| (Example: an icosahedron greatens into a great icosahedron) aggrandizement - replaces the cells by large ones in same 3-spaces. | (Пример - икосаэдр увеличивается в большой икосаэдр) aggrandizement (возвеличивание) заменяет ячейки большими в тех же 3-мерных пространствах. |
| Its dual, the great icosahedron, is related in a similar fashion to the icosahedron. | Его двойственный многогранник, большой икосаэдр, связан похожим образом с икосаэдром. |
| There are 58 stellations of the icosahedron, including the great icosahedron (one of the Kepler-Poinsot polyhedra), and the second and final stellations of the icosahedron. | Существует 58 звёздчатых форм икосаэдра, сюда входят Большой икосаэдр (одно из тел Кеплера - Пуансо), вторая и последняя звёздчатые формы икосаэдра. |
| One can also divide the edges of an octahedron in the ratio of the golden mean to define the vertices of an icosahedron. | Можно разделить рёбра октаэдра в отношении золотого сечения для определения вершин икосаэдра. |
| When regarded as a star icosahedron, the complete stellation is a noble polyhedron, because it is both isohedral (face-transitive) and isogonal (vertex-transitive). | Если рассматривать ехиднаэдр как звёздчатый многогранник, то завершающая форма икосаэдра является благородным многогранником, так как он является равногранным (гране-транзитивным) и изогональным (вершинно-транзитивным). |
| The twelve vertices of the icosahedron can be decomposed in this way into three mutually-perpendicular golden rectangles, whose boundaries are linked in the pattern of the Borromean rings. | Двенадцать вершин икосаэдра можно разбить на три взаимно перпендикулярных золотых прямоугольника, границы которых образуют кольца Борромео. |
| There are 12 uniform snub polyhedra, not including the antiprisms, the icosahedron as a snub tetrahedron, the great icosahedron as a retrosnub tetrahedron and the great disnub dirhombidodecahedron, also known as Skilling's figure. | Существует 12 однородных плосконосых многогранников, не включая антипризм, икосаэдра как плосконосого тетраэдра, большого икосаэдра как обратноплосконого тетраэдра и большого биплосконосого биромбоикосододекаэдра, известного также как тело Скиллинга. |
| There are 58 stellations of the icosahedron, including the great icosahedron (one of the Kepler-Poinsot polyhedra), and the second and final stellations of the icosahedron. | Существует 58 звёздчатых форм икосаэдра, сюда входят Большой икосаэдр (одно из тел Кеплера - Пуансо), вторая и последняя звёздчатые формы икосаэдра. |
| Note the duality between the cube and the octahedron, and between the dodecahedron and the icosahedron. | Заметим двойственность между кубом и октаэдром и между додекаэдром и икосаэдром. |
| Its dual, the great icosahedron, is related in a similar fashion to the icosahedron. | Его двойственный многогранник, большой икосаэдр, связан похожим образом с икосаэдром. |
| A regular dodecahedron has the same set of symmetries, since it is the dual of the icosahedron. | Правильный додекаэдр имеет тот же набор симметрий, поскольку он двойственен икосаэдру. |
| The triangular tilings are depicted below: Spherical tilings corresponding to the octahedron and the icosahedron and dihedral spherical tilings with even n are centrally symmetric. | Треугольные замощения приведены ниже: Сферические паркеты, соответствующие октаэдру и икосаэдру, а также диэдральным сферичесим мозаикам с чётным n, центрально симметричны. |
| Earth was associated with the cube, air with the octahedron, water with the icosahedron, and fire with the tetrahedron. | Земля сопоставлялась кубу, воздух - октаэдру, вода - икосаэдру, а огонь - тетраэдру. |